Cohomology of Torus Bundles over Kuga Fiber Varieties

نویسنده

  • Min Ho Lee
چکیده

A Kuga fiber variety is a family of abelian varieties parametrized by a locally symmetric space and is constructed by using an equivariant holomorphic map of Hermitian symmetric domains. We construct a complex torus bundle T over a Kuga fiber variety Y parametrized by X and express its cohomology H∗(T ,C) in terms of the cohomology of Y as well as in terms of the cohomology of the locally symmetric space X. MSC 2000: 14K99, 11F75

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted Torus Bundles over Arithmetic Varieties

A twisted torus is a nilmanifold which is the quotient of a real Heisenberg group by a cocompact discrete subgroup. We construct fiber bundles over arithmetic varieties whose fibers are isomorphic to a twisted torus, and express the complex cohomology of such bundles over certain Riemann surfaces in terms of automorphic forms.

متن کامل

Motives for modular forms

In [DeFM], Deligne constructs l-adic parabolic cohomology groups attached to holomorphic cusp forms of weight ≥ 2 on congruence subgroups of SL2(Z). These groups occur in the l-adic cohomology of certain smooth projective varieties over Q—the Kuga-Sato varieties— which are suitably compactified families of products of elliptic curves. In view of Grothendieck’s conjectural theory of motives it i...

متن کامل

Kuga-satake Varieties and the Hodge Conjecture

Kuga-Satake varieties are abelian varieties associated to certain weight two Hodge structures, for example the second cohomology group of a K3 surface. We start with an introduction to Hodge structures and we give a detailed account of the construction of Kuga-Satake varieties. The Hodge conjecture is discussed in section 2. An excellent survey of the Hodge conjecture for abelian varieties is [...

متن کامل

On GKM Description of the Equivariant Cohomology of Affine Flag Varieties and Affine Springer Fibers

For a projective variety endowed with a torus action, the equivariant cohomology is determined by the fixed points of codimension 1 subtori. Especially, when the fixed points of the torus are finite and fixed varieties under the action of codimension 1 subtori have dimension less than or equal to 2, equivariant cohomology can be described by discrete conditions on the pair of fixed points via G...

متن کامل

Equivariant Holomorphic Morse Inequalities II: Torus and Non-Abelian Group Actions

We extend the equivariant holomorphic Morse inequalities of circle actions to cases with torus and non-Abelian group action. For torus actions, there is a set of inequalities for each choice of action chambers specifying directions in the Lie algebra of the torus. If the group is non-Abelian, there is in addition an action of the Weyl group on the fixed-point set of its maximal torus. The sum o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008